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Abstract
GC-rich repeat expansion mutations are implicated in several neurodegenerative diseases and can lead to repeat associated
non-AUG-dependent (RAN) translation and concentrations of nuclear RNA foci. To model C9orf72 ALS/FTD, we engineered
C. elegans to express pure GGGGCC (G4C2) repeats of varying lengths and observed RAN translation and nuclear RNA foci.
RNA foci were observed in animals expressing ≥20 G4C2 repeats while RAN translation occured in animals expressing ≥33
G4C2 repeats. These findings show that in C. elegans, RAN translation can occur even in the absence of C9orf72 intronic
sequence normally surrounding the repeat. Given that the currently accepted repeat threshold for C9 disease is >30 repeats, our
data are consistent with a model in which RAN peptides are key drivers of C9orf72 disease pathology.
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Figure 1.

Figure 1. Characterization of a C. elegans G4C2 repeat model. A) Description of G4C2 expression clones and their
expression products. Characteristics of these expression clones are listed above the G4C2 repeat domain. B) In situ
hybridization to detect G4C2 -containing mRNA in muscle cell nuclei. Arrowheads point to examples of RNA foci, which
were only observed in muscle cell nuclei (dashed circle). Scale bar = 1 micron. C) Quantification of the percentage of animals
with observable RNA foci. The number above each bar represents the number of animals examined. **** - p<0.0001, Fisher’s
exact test with Bonferroni correction. D) Canonical translation or RAN translation was detected using GFP expression. Note in
the ‘+ATG’ lines how GFP expression transitions from soluble to puncta as the number of repeats increase. This is consistent
with the production of a (Gly-Ala)x-GFP fusion protein with increasing number of repeats, which is known to form aggregates
in C. elegans (Rudich et al. 2017). Without a start ATG, GFP expression is not observed until repeats ≥33, which fits the
definition of RAN translation (Zu et al. 2011). All images were taken using identical exposure times. Scale bar = 100 microns.
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E) Quantification of RAN translated GFP. Data were normalized to the mean of the 5 repeat measurements. Graph shows the
mean ± S.D. with individual data points shown. **-p<0.01, ***-p<0.001, ****-p<0.0001, One-way ANOVA with Welch test.

Description
A six nucleotide repeat (GGGGCC; G4C2) in the first intron of the C9orf72 gene is the most common genetic cause of
Amyotrophic Sclerosis (ALS) and Frontotemporal Dementia (FTD) (DeJesus-Hernandez et al. 2011; Murray et al. 2011;
Renton et al. 2011). The formation of nuclear localized repeat-containing RNA foci is a hallmark of C9orf72 pathogenesis
(Mizielinska et al. 2013). Moreover, unconventional repeat associated non-AUG dependent (RAN) translation of sense G4C2
and antisense G2C4 repeat containing mRNA gives rise to six distinct dipeptide proteins (DPRs) (Mori et al. 2013), some of
which are highly neurotoxic in multiple model systems, including C. elegans (Rudich et al. 2017; Snoznik et al. 2021). While
prior studies have shown G4C2 repeats can give rise to RNA foci and RAN translation in C. elegans (Kramer et al. 2016;
Sonobe et al. 2021), the contextual requirements for these processes are not defined. For example, how many G4C2 repeats are
required for RNA foci formation and RAN translation? Is the sequence surrounding the G4C2 repeat in intron 1 of the C9orf72
sequence required for RAN translation?

To address these questions, we developed transgenic C. elegans expressing defined numbers of pure G4C2 repeats lacking any
of the surrounding C9orf72 intron sequence (Figure 1A). To clone these 100% GC repeats, we commercially synthesized a
(G4C2)5 clone flanked by unique restriction sites (HindIII/BamHI) and expanded the repeat length using a recursive
directional ligation strategy (McDaniel et al. 2010) into the standard C. elegans pPD95.79 GFP expression vector. To achieve
repeat sizes ≥33, we discovered that we had to modify the pPD95.79 vector by reversing the origin of replication (Ori), likely
due to alterations in the stability of G-rich leading versus lagging strands during replication (Thys and Wang 2015). With the
Ori flipped, we were able to clone up to 120 G4C2 repeats, which we verified by restriction digest and DNA sequencing. We
cloned a muscle-specific myo-3 promoter (with or without a start ATG) upstream of the repeat. GFP coding sequence was
downstream of the repeat and was located in the ‘Glycine-Alanine’ (GA) DPR reading frame. We used these plasmids to
generate transgene arrays using standard microinjection approaches. Repeats in vivo appeared stable, since in the ‘+ATG’
clones, we observed robust GFP expression that showed increased aggregate formation with increasing repeat number,
consistent with our previous observations of GA-GFP (Rudich et al. 2017). We did not observe notable changes in viability,
fecundity, or behavior for any of the lines. We also failed to observe any notable phenotypes when the 120 repeat clone was
injected at higher concentrations (100ng/µl). Note that unlike previous C. elegans G4C2 models (Kramer et al. 2016; Sonobe
et al. 2021), our models lack any neighboring C9orf72 sequence context.

We first examined the properties of RNA foci formation in Day 1 adults using in situ hybridization to detect sense strand RNA
foci (Figure 1B,C). We observed that expression of high repeat numbers gave rise to robust nuclear foci only in the muscle
cells expressing the G4C2 mRNA. We failed to detect RNA foci in muscle using a G4C2 antisense probe, suggesting these C.
elegans G4C2 lines do not undergo antisense transcription as is observed with native G4C2 repeats in mammals (Zu et al.
2013). We discovered that the threshold for sense RNA foci formation was less than 20 repeats, as no foci formation was
observed in the 5 repeat animals, but foci were observed in 20, 33, 50, 70, and 120 repeat animals. Qualitatively, RNA foci
appear to be more discreet and numerous as the number of repeats increase, although we note that this could be a consequence
of the number of available binding sites for the nucleic acid probe, which is 4 repeats in length.

Next, we examined whether or not the G4C2 transgenes lacking a start ATG supported RAN translation, despite the absence of
surrounding C9orf72 intron sequence (Figure 1D,E). All of the G4C2 clones produced robust GFP expression in the presence
of a start ATG, indicating all of the clones are intact and capable of supporting translation. However, in the absence of a start
ATG, we did not observe GFP expression in lines with 5 or 20 G4C2 repeats. However, in animals expressing 33, 50, 70, and
120 G4C2 repeats, significant GFP expression in muscle cells was observed. The levels of GFP expression in the -ATG lines
undergoing RAN translation were qualitatively weaker that those observed in the +ATG lines. Additionally, we found that
GFP expression in the -ATG lines rarely formed puncta as observed in the +ATG lines with ≥33 repeats. This could be due to
the lower levels of GFP expression in the -ATG lines, since aggregate formation may be concentration dependent (Fung et al.
2003). Alternatively, this could be due to the initiation of translation within the body of the repeat leading to the production of
GA repeats below the threshold for aggregation. Nevertheless, our data show that C. elegans exhibit repeat-associated non-
ATG dependent translation from a pure G4C2 repeat transgene lacking any additional C9orf72-specific sequences.

We find that the pure G4C2 sequence is sufficient to support RNA foci formation and RAN translation even in the absence of
any flanking C9orf72 sequences in C. elegans. This is significant because all previous C. elegans G4C2 models utilized a
C9orf72 ‘minigene’ containing a single repeat length with flanking human intronic sequence. These intronic sequences may
play an important role since RAN translation is greatly enhanced by the presence of non-repeat alternative start codons within
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the C9orf72 intron (Green et al. 2017; Sonobe et al. 2021). Our findings show that even in the absence of these intronic
sequences, the pure repeat sequence is sufficient to support both RNA foci formation and RAN translation.

G4C2 RAN thresholds in C. elegans closely match the hypothesized disease threshold in human ALS patients of >30 repeats
(DeJesus-Hernandez et al. 2011). This is consistent with the hypothesis that RAN peptides have a primary pathological role in
the development of C9 disease. Indeed, we previously found that arginine-rich dipeptide repeats are toxic in both C. elegans
and mammals through similar genetic pathways (Snoznik et al. 2021). Overall, our G4C2 models provides a robust visual
phenotype for future genetic screens aimed at defining the molecular mechanisms of G4C2 RAN translation. Such screens may
provide new pathological insights and treatments targets for the C9orf72 related neurodegenerative diseases.

Methods
Construction of G4C2 expression plasmids and transgenic worms. A (GGGGCC)5 sequence flanked by HindIII and
BamHI restriction sites was commercially synthesized in the pMA vector (ThermoFisher Scientific). Repeats were expanded
using the recursive directional ligation (RDL) strategy to generate pure uninterrupted repeats, as previously described
(Mizielinska et al. 2014). Briefly, the origin vector was linearized with BspQI. An insert of (G4C2)n was isolated via
BspQI/EcoO1091 digestion and inserted into the origin vector. Further rounds of RDL were carried out to generate repeats of
the indicated sizes. Repeats were subcloned into the pPD95.79 vector (AddGene) using HindIII/BamHI digestion. This vector
was modified to reverse the origin of replication, which we discovered to be necessary to subclone >33 G4C2 repeats. A 2.5Kb
myo-3 promoter fragment +/- the start ATG was subcloned into the HindIII site to generate the final expression vector. Final
expression clones were verified by Sanger sequencing (Genewiz). Chromatographs were visually inspected to verify the
number of GGGGCC repeats. N2 worms were injected with the G4C2 expression plasmid (20 ng/µl) and either rol-6 (80 ng/
µl) or myo-2p::mCherry (2.5 ng/µl) as a transformation marker. At least 2 extrachromosomal array lines were analyzed for
each repeat construct to verify phenotypic consistency. All strains were grown on NGM plates with OP50 bacteria.

In situ hybridization. RNA foci were detected using in situ hybridization using a Cy5-labeled (G2C4)4 locked nucleic acid
(LNA) probe (IDT). Day 1 adult worms grown at 25ºC were fixed in 4% paraformaldehyde followed by washes in 70%, 90%,
and 100% EtOH. The LNA probe was denatured at 80 ºC for 75 seconds and then added to hybridization buffer (50%
formamide, 2X SSC, 50 mM NaPO4, 10% dextran sulfate) at 10 ng/µl. Probes were hybridized overnight at 37 ºC. Worms
were then washed twice for 30 minutes with 2X SSC at 37 ºC. Next, worms were washed in 4X SSC with 0.1% Triton X100
containing 1 ug/ml Hoechst 33258, followed by two washes with 2X SSC at room temperature for 5 minutes. Worms were
then mounted on slides containing antifade solution. Images were acquired using a Leica DMI4000B widefield microscope
and deconvolved using identical settings. Each image is from a deconvolved Z-stack where DNA and RNA foci were observed
in the same plane. For quantification, individual animals were scored as either foci positive or foci negative by an observer
blinded to genotype. Animals was scored as ‘Foci positive’ if they contained ≥5 foci of Cy5 signal that co-localized with the
nuclear DNA signal.

GFP imaging. Worms expressing the indicated number of G4C2 repeats were cultured at 25 ºC. 24 hours after worms reached
the L4 stage, animals were anesthetized with 10 mM levamisole. For images, worms were arranged on the surface of a clean
NGM agar plate and images were captured using M205FA fluorescence dissecting scope and a DFC345FX digital camera
using identical exposure times within the '+ATG' or '-ATG' groups. For quantification, worms were anesthetized in 10mM
levamisole and placed on a slide and GFP and DAPI images were captured with a 10X lens and GFP filter (Leica L5 ET set)
and DAPI filter (Leica A4 ET set) on a DMI4000B with a DFC 340FX camera (N=8 per genotype, identical settings for all
genotypes). To account for autofluorescence, the DAPI image was subtracted from the GFP image. For the resulting subtracted
image, GFP fluorescence was quantified along each of three 100 micron lines per animal centered on the midline at the
animal’s head (immediately posterior to pharynx), midbody (vulva region), and tail (immediately posterior to intestine).
Intensity measurements were summed along and between lines to get a total GFP measurement per animal). Image subtraction
and intensity measurements were carried out in Leica Advanced Fluorescence Software, v2.1.0.

Reagents
C. elegans Strains:

Strain Genotype

OG1247 +/+; drEx503 [myo-3p+ATG::(G4C2)5-gfp (20ng/ul); rol-6 (80ng/ul)]
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OG1249 +/+; drEx505[myo-3p+ATG::(G4C2)20-gfp (20ng/ul); rol-6 (80ng/ul)]

OG756 +/+; drEx275 [myo-3p+ATG::(G4C2)33-gfp (20ng/ul); rol-6 (80ng/ul)]

OG794 +/+; drEx301 [myo-3p+ATG::(G4C2)50-gfp (20ng/ul); rol-6(80ng/ul)]

OG779 oxIs322; drEx287 [myo-3p+ATG::(G4C2)70-gfp (20ng/ul); rol-6 (80ng/ul)]

OG791 oxIs322; drEx298 [myo-3p+ATG::(G4C2)120-gfp (20ng/ul); rol-6 (80ng/ul)

OG1148 +/+; drEx480 [myo-3p-NO ATG::(G4C2)5-gfp (20ng/ul); rol-6 (80ng/ul)]

OG1145 +/+; drEx477 [myo-3p-NO ATG::(G4C2)20-gfp (20ng/ul); rol-6 (80ng/ul)]

OG759 +/+; drEx477 [myo-3p-NO ATG::(G4C2)33-gfp (20ng/ul); rol-6 (80ng/ul)]

OG967 drIs42 [myo-3p-NO ATG::(G4C2)50-gfp (20ng/ul); rol-6 (80ng/ul)]

OG782 oxIs322; drEx290 [myo-3p-NO ATG::(G4C2)70-gfp (20ng/ul); rol-6 (80ng/ul)]

OG977 drIs41 [myo-3p-NO ATG::(G4C2)120-gfp (20ng/ul); myo-2p::mCherry (2.5ng/ul); pBluescript (77.5ng/ul)]

Acknowledgements: We thank Aaron Haeusler (Thomas Jefferson University) for originally suggesting the idea to switch the
plasmid Ori to generate stable high-copy G4C2 repeat expression clones and Robert G. Kalb for comments on the manuscript.
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