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Abstract

The DAF-2 Insulin/IGF-1 signaling (IIS) pathway is a strong modifier of Caenorhabditis elegans longevity and healthspan. As
aging is the greatest risk factor for developing neurodegenerative diseases such as Amyotrophic Lateral Sclerosis (ALS), we
were interested in determining if DAF-2 signaling modifies disease pathology in mutant superoxide dismutase 1 (SOD1)
expressing C. elegans. Worms with pan-neuronal G85R SOD1 expression demonstrate significantly impaired locomotion as
compared to WT SOD1 expressing controls and they develop insoluble SOD1 aggregates. Reductions in DAF-2 signaling,
either through a hypomorphic allele or neuronally targeted RNAi, decreases the abundance of aggregated SOD1 and results
in improved locomotion in a DAF-16 dependant manner. These results suggest that manipulation of the DAF-2 Insulin/IGF-1
signaling pathway may have therapeutic potential for the treatment of ALS.
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Introduction

ALS is an adult onset neurodegenerative disease characterized

by progressive weakness, due to dysfunction and eventual death of

motor neurons. The majority of cases of ALS are sporadic but

single gene mutations have been described that lead to inherited

versions of the disease. These genes include SOD1, TAR DNA

binding protein (TDP43), fused in sarcoma, progranulin, ubiquilin

2 and a hexanucleotide repeat expansion of a noncoding region in

C9ORF72 [1,2,3,4,5,6,7]. Expression of some of these mutant

proteins in model organisms has been used to successfully model

ALS pathology.

Point mutations in SOD1 (e.g., G85R) are an example of a

genetic cause of familial ALS that has been successfully modeled in

transgenic mice and nematodes [8]. The G85R point mutation

causes a toxic gain-of-function, which in mice leads to ubiquiti-

nated SOD1 aggregates and motor neuron death [9]. C. elegans

expressing human G85R SOD1 in the nervous system accumulate

SOD1 aggregates and demonstrate reduced mobility compared to

WT SOD1 expressing worms [10]. The availability of numerous

loss-of-function mutants affecting highly conserved signaling

pathways make C. elegans an ideal system in which to explore the

relationship between such pathways and SOD1 aggregation and

toxicity in an in vivo setting.

Aging is the greatest risk factor for the development of ALS.

The Insulin/IGF-1 signaling (IIS) pathway is a robust modifier of

longevity and aging in C. elegans [11]. Loss of function of the

Insulin/Insulin-like growth factor receptor, DAF-2, promotes

longevity via signaling cascades mediated by inhibition of the

phosphoinositide 3-kinase (age-1) and activation of the forkhead

transcription factor DAF-16 via its nuclear localization [12].

While nuclear localization of DAF-16 is required for it to execute

its transcriptional activities, it is not sufficient to enhance

longevity and stress resistance [13]. Other pathways are known

to interact with the IIS pathway and modulate stress resistance

and/or aging by regulating transcriptional activity of DAF-16,

without modifying its nuclear abundance [14]. In addition to

promoting longevity, loss of function alleles of daf-2 or age-1

protects the worm against exogenous stressors including heat

shock, oxidative stress, heavy metal stress, UV damage and

infection [15,16,17,18]. The beneficial effects of reduced IIS rely,

in part, on the ability of decreased IIS to activate the

transcription factor DAF-16, leading to increased expression of

numerous stress resistance genes, such as small heat shock

proteins and reactive oxygen species scavenging enzymes [18,19].

Additionally, reduced IIS also results in changes in metabolism,

mitochondrial abundance and lipid biosynthesis, all of which are

thought to contribute to the stress resistant phenotype of reduced

IIS [20,21,22]. Reduced DAF-2 signaling has been shown to have

beneficial effects on other age related neurodegenerative diseases

such as polyglutamine expansion proteinopathy and Alzheimer’s

disease [12,23]. The ability to easily control the IIS pathway both

genetically and via RNA interference (RNAi) makes the worm an

excellent system for studying the interactions between aging and

the toxicity of mutant SOD1. In the present study we asked if

manipulation of IIS pathway can improve the reduced mobility

and insoluble protein aggregation seen in G85R SOD1

expressing worms.
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Results

Decreased crawling speed of G85R worms is ameliorated
by decreased IIS signaling

We began by monitoring the average crawling speed of G85R,

G85R;daf-2(e1370), G85R;daf-16(mgDf50), daf-2(e1370) and daf-

16(mgDf50) worms on a bacterial lawn (OP50) at 96, 120, 144

and 168 hours after depositing eggs onto plates with bacteria

(figure 1 A). Group differences were observed at 96, 120 and

144 hrs post egg drop (96, 120 and 144 hrs: F(4,25) = 22.96,

F(4,25) = 11.08, F(4,28) = 12.57 respectively by single factor ANOVA

p,0.01 at all timepoints). At 96, 120 and 144 hrs after growth

initiation, the G85R;daf-2(e1370) worms crawled approximately

twice as fast as G85R worms (p,0.05 at 96, 120 and 144 hrs by

Tukey’s post-hoc) while at the 168 hr time point no significant

difference was observed. Although not statistically significant,

G85R;daf-16(mgDf50) worms tended to perform worse than G85R

worms at all time points. These results suggest that reduced IIS

ameliorates the toxic effects of mutant SOD1, and while this

benefit is maintained for 144 hrs of life, it can not be sustained

after this point. The fact that G85R worms that are also null for

DAF-16 tend to perform worse than G85R worms suggests that

part of the worm’s endogenous response to proteotoxic insults,

such as mutant SOD1, may include activation of DAF-16.

In order to control for any potential variation in locomotion

and/or behavioral differences in worms with the daf-2(e1370) or

daf-16(mgDf50) mutations, we examined the average crawling

speed of worms carrying these mutations on a non-SOD1

background. There were no statistically significant differences

between these two groups in locomotory activity at any time point

observed (by Tukey’s post-hoc), suggesting that these mutations

are modulating the toxicity of G85R as opposed to altering other

aspects of behavior or locomotion in general.

Decreased swim speed of G85R worms is ameliorated by
decreased IIS signaling

While the crawling assay allowed us to identify an improvement

in the locomotory activity of G85R worms when they were on the

daf-2(e1370) background, the inability to control for behavior

Figure 1. A) Videos of worms crawling on OP50 at the indicated times were taken and used to calculate worm speed using the parallel worm tracker
software. B) Average swim speed normalized to size was calculated at the indicated times using the parallel worm tracker. C) Swim speed normalized
to size was calculated for TDP43 and TDP43;daf-2(e1370) worms 72 hrs post egg drop.
doi:10.1371/journal.pone.0033494.g001
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during a given observation window made speed measurements

variable. In order to reduce variability we examined swimming

worms, a context which elicits continual movement.

We compared the following worm strains in the swimming assay:

WT SOD1, G85R, G85R;daf-2(e1370), G85R;daf-16(mgDf50), and

G85R;daf-2(e1370);daf-16(mgDf50) (figure 1 B). Between group

differences were detected at all timepoints by single factor ANOVA

(72, 96, 120, 144, and 168 hrs: F(4,25) = 15.53, F(4,26) = 14.22,

F(4,25) = 8.67, F(4,25) = 10.82, F(4,25) = 9.56 p,0.01 at all timepoints).

WT SOD1 worms were significantly faster than G85R worms at all

timepoints (p,0.01 by Tukey’s post-hoc). G85R;daf-2(e1370) worms

were also significantly faster than G85R worms at all timepoints

(p,0.05 by Tukey’s post-hoc) and had mobility equivalent to WT

SOD1 worms at all time points (no significant difference by Tukey’s

post-hoc). Ablation of daf-16 in the G85R;daf-2(e1370) worms

eliminated the observed rescue effect of daf-2(e1370) as no

statistically significant difference was observed between G85R and

G85R;daf-2(e1370);daf-16(mgDf50) worms (by Tukey’s post-hoc).

These observations provide further data in support of the hypothesis

that the daf-2(e1370) background is strongly protective against the

toxicity of G85R SOD1 as assessed by locomotory function and that

this protection is daf-16 dependent.

There was a trend for G85R;daf-16(mgDf50) worms to perform

worse than either G85R or (G85R;daf-2(e1370);daf-16(mgDf50)

worms although it was only significant at 96 hrs (p,0.05 by

Tukey’s post-hoc). The observation that G85R;daf-16(mgDf50)

worms tended to perform worse than G85R;daf-2(e1370);daf-

16(mgDf50) worms suggests that part of the beneficial effect of

daf-2(e1370) may be daf-16 independent. As in the crawling assay,

the fact that G85R;daf-16(mgDf50) worms tended to perform worse

than G85R worms also suggests a potential role of daf-16 in the

worm’s endogenous response to proteotoxic insults. Like the

crawling assay, the swimming assay further supports the hypothesis

that reduced IIS activity reduces G85R SOD toxicity.

In order to determine the specificity of daf-2(e1370) on SOD1

toxicity we tested the effects of daf-2(e1370) on worms expressing

TDP-43 in the nervous system (Psnb-1::hTDP-43) (Figure 1 C).

Like the mutant SOD1 expressing worms, transgenic expression of

TDP-43 in the C. elegans nervous system causes locomotory defects

and protein aggregation [24]. In a comparison of swim speed of

TDP-43 worms versus TDP-43;daf-2(e1370) worms, we found daf-

2(e1370) improved TDP-43 induced swimming deficit (p,0.01 by

t-test).

Improvement of the G85R phenotype is dependent on
decreased IIS in the nervous system

daf-2(RNAi) has previously been described to mimic the

longevity/healthspan promoting effects of the daf-2(e1370) hypo-

morphic allele and RNAi to daf-16 has been shown to abrogate the

benefits of loss of function of daf-2 [25]. We next compared

locomotion of G85R worms fed daf-2, daf-16 or empty vector (EV)

RNAi. Unexpectedly, feeding neither daf-2 nor daf-16 RNAi to

G85R worms had a significant effect on locomotion (Figure 2 D,E).

One possible explanation for these differences is the variable

effectiveness of RNAi in the worm nervous system.

The resistance of worm neurons to RNAi can be mitigated by

transgenic over expression of SID-1 in the nervous system [26].

SID-1 allows for passive cellular uptake of double stranded RNA,

therefore increasing a cells response to RNAi. SID-1 is not

normally expressed in neurons, therefore one way to selectively

increase the nervous systems response to RNAi is through

transgenic expression of SID-1 in the nervous system of worms

that are null for sid-1 in peripheral tissues. In order to maximize

the efficacy of RNAi in the nervous system of G85R worms we

generated Psnb-1::G85R::YFP; sid-1(pk3321)[Punc119::sid-1];Pmyo-

6::mcherry worms, hereafter referred to as G85R;sid-1. G85R and

G85R;sid-1 worms were fed G85R-YFP or empty vectro (EV)

RNAi. G85R;sid-1 worms fed G85R-YFP RNAi showed decrease

YFP intensity in the nervous system and a significant (p,0.05 by t-

test) increase in locomotory activity compared to G85R;sid-1

worms fed EV RNAi (Figure 2 A–B). Feeding G85R worms G85R-

YFP RNAi had no effect on fluorescence intensity or locomotory

activity (Figure 2 A and data not shown). These observations lead

to two important conclusions 1) they confirm the increased efficacy

of neuronal RNAi in the sid-1 nervous system expressing sid-

1(pk3321)[Punc119::sid-1];Pmyo-6::mcherry background and 2) dem-

onstrate that the locomotory phenotype in these worms is likely to

be due to mutant G85R SOD1 expression and not integration of

the transgene into a critical locus.

To better understand the role of IIS in the nervous system on

G85R toxicity we compared the following groups: RNAi to daf-2,

daf-16 and EV fed to G85R and G85R;sid-1 worms. While G85R

worms fed daf-2 RNAi showed no significant improvement in

mobility compared to G85R worms fed EV, G85R;sid-1 worms fed

daf-2 RNAi had significantly improved mobility compared to all

other groups (ANOVA F(3,16) = 13.66 p,0.01 and p,0.01 by

Tukey’s post-hoc) (Figure 2 E). This disparity between the effects

on G85R versus G85R;sid1 worms suggests the need for decreased

IIS activity in the nervous system in this model to rescue

locomotory activity.

We also compared locomotion of G85R;daf-2(e1370) worms fed

daf-16 RNAi or EV. Feeding G85R;daf-2(e1370) worms daf-16

RNAi abrogated a significant (p,.05 by t-test) amount of the daf-

2(e1370) induced rescue of locomotory function as compared to

feeding EV RNAi (figure 2 C). It is interesting that the daf-16

(RNAi) appears to diminish daf-2(e1370) rescue on a non-

Punc119::sid1;sid1(pk3321) background suggesting it is working

outside of the nervous system. This raises the possibility that

although reduced IIS is required in the nervous system to rescue

locomotory activity in this model, there are daf-16 dependent

effects in non-nervous system tissues.

IIS activity modulates the solubility of SOD1
Aging in the worm is known to be a major modifier of

generalized protein solubility and aggregation, and decreased daf-2

signaling has been found to decrease the amount of aggregation

that occurs [27]. Since aggregated SOD1 generally correlates with

toxicity in ALS we wanted to determine if the daf-2(e1370)

background was decreasing aggregation in G85R worms. Zhang et.

al. demonstrated that the daf-2(e1370) background significantly

reduces the steady state abundance of insoluble TDP-43 in the

worms we assessed in our swimming assay [24]. To determine if

IIS was modifying the solubility of SOD1 in this model, soluble

versus insoluble fractions were prepared from G85R, G85R;daf-

2(e1370) and G85R;daf-2(e1370);daf-16(mgDf50) and immuno-

blotted for SOD1 and actin (figure 3A). We found a significant

amount of insoluble SOD1 in the G85R worms which was greatly

diminished in the daf-2(e1370) background. Deletion of daf16 in

the G85R;daf-2(e1370);daf-16(mgDf50) worms suppressed this

effect. While the absolute values of soluble SOD1 were not

constant between the three groups the ratio of insoluble to soluble

SOD1 was significantly greater in the G85R;daf-2(e1370);daf-

16(mgDf50) and G85R worms as compared to G85R;daf-2(e1370)

(figure 3B) (p,.05 by single factor ANOVA, F(2,6) = 7.719 and

p,0.05 for both comparisons by Tukey’s post-hoc). This suggested

that daf-2(e1370) improves the solubility of SOD1, leading to an

increased steady-state abundance of the soluble species. These

data were collected from a mixed population of animals so we

Daf-2 Signaling Modifies Mutant SOD1 Toxicity

PLoS ONE | www.plosone.org 3 March 2012 | Volume 7 | Issue 3 | e33494



were interested in further characterizing SOD1 abundance at

various ages.

Total SOD1 burden does not correlate with locomotor
activity

While no differences in YFP intensity were evident by eye when

observing the different worm strains, we wished to explore the

total burden of SOD1 at various times more closely. In order to do

this we used the COPAS worm sorter to measure YFP intensity

and time-of-flight (TOF, i.e., length) in individual animals from a

mixed population of approximately ten thousand worms from the

following groups: G85R, G85R;daf-2(e1370) and G85R;daf-

2(e1370);daf-16(mgDf50) (figure 3C). Using TOF as a proxy for

age, we were unable to identify a direct correlation between total

SOD1 burden and locomotory activity. The data were binned into

TOF measurements of 100 units and significant differences

between groups were observed in all bins by ANOVA (0–100

TOF F(2,11369) = 881.69, 101–200 TOF F(2,7209) = 250.90, 201–

300 TOF F(2,4880) = 48.1, 301–400 TOF F(2,3075) = 243.23, 401–

500 TOF F(2,1435) = 411.05, 501–600 TOF F(2,708) = 277.65). In

Figure 2. A) YFP signal was imaged in G85R or G85R;unc119p::sid1;sid1(pk3321) worms fed empty vector (EV) or G85R:YFP RNAi in order to
demonstrate the efficacy of RNAi in neurons on the unc119p::sid1;sid1(pk3321) background B–E) Average speed normalized to size of swimming
worms fed bacteria expressing the indicated RNAi.
doi:10.1371/journal.pone.0033494.g002
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young worms( 0–200 TOF) SOD1 intensity was equivalent

between G85R and G85R;daf-2(e1370) worms (no significant

differences between groups by Scheffe’s post-hoc), yet significant

locomotory differences were observed between these groups at all

ages assessed using the swimming assay. Conversely, young

G85R;daf-2(e1370);daf-16(mgDf50) worms have significantly less

YFP intensity than G85R and G85R;daf-2(e1370) worms (p,0.05

by Scheffe’s post-hoc), yet they perform worse than G85R;daf-

2(e1370) worms and equivalent to G85R worms in our locomotory

assays. Looking at older worms (300–600 TOF), G85R worms

have a total SOD1 burden that significantly exceeds that of

G85R;daf-2(e1370);daf-16(mgDf50) worms (p,0.05 by Scheffe’s

post-hoc in 301–400, 401–500 and 501–600 bins) yet they show

similar locomotory activity in the swim test. This is unlikely to

simply be a floor-type effect as G85R;daf-16(mgDf50) worms

perform worse in the swimming assay than both G85R and

G85R;daf-2(e1370);daf-16(mgDf50) worms, suggesting that there is

room for decline in the locomotory phenotype. Taken together

these results suggest that overall SOD1 burden is not responsible

for the locomotory differences observed between these groups, but

rather suggest that the locomotory differences result from changes

in how SOD1 toxicity is handled in these various backgrounds.

IIS effects on longevity in the SOD1 background
The toxicity of mutant SOD1 expression in the C. elegans

nervous system was previously reported to have a negative effect

on lifespan [10]. In order to determine whether decreased daf-2

signaling in this background has a beneficial effect on lifespan,

similar to its effect on locomotion, longevity was monitored in WT

SOD1, G85R;daf-2(e1370) and G85R;daf-2(e1370);daf-16(mgDf50)

worms (figure 4). WT SOD1 and G85R;daf-2(e1370);daf-16(mgDf50)

worms had similar lifespans, while the G85R;daf-2(e1370) worms

had a modest but statistically significant increase in lifespan

(p,0.05 by Mann-Whitney analysis). Interestingly, there is no

correlation between health and lifespan as assayed by locomotory

activity.

Discussion

Aging is a common risk factor for many neurodegenerative

diseases [28]. The IIS pathway is a well characterized genetic

modifier of aging in C. elegans [11] and we demonstrate here that

alterations in this pathway can robustly modify the toxicity of

mutant SOD1 as assessed by mobility, protein aggregation and

longevity. We find that reduced daf-2 activity has a beneficial effect

on the toxicity of G85R SOD1 and that this beneficial effect is daf-

16 dependent. While aging in the worm has previously been

shown to be coordinated at the organismal level, we found a

requirement for IIS to be reduced in the nervous system in order

to modify SOD1 toxicity. Although the genetic modifiers of aging

are less well characterized in humans, these data suggest that IIS

and pathways which beneficially modify lifespan/healthspan in

humans may be potential targets for therapeutic intervention in

ALS.

Figure 3. A) Representative western blot from three experiments looking at soluble vs insoluble SOD1 B) Quantification of SOD1 insoluble : soluble
ratio C) COPAS data showing average YFP intensity for bins of various worm TOF.
doi:10.1371/journal.pone.0033494.g003
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Although their exact role in disease pathology is not entirely

understood, aggregated proteins are associated with numerous

neurodegenerative diseases, including ALS [29,30]. As aging

occurs, the total burden of aggregated proteins increases,

suggesting a diminished capacity for proper folding and/or

degradation of aggregation prone proteins with age [31]. In this

study we demonstrate that a LOF mutation of daf-2 diminishes the

amount of insoluble SOD1; an effect that might be due to an

increased capacity for clearance/folding in these worms. Similar

observations have been made regarding the ability of modifica-

tions of IIS to modulate the solubility and toxicity of other disease

related proteins [12,24,32]. This is likely due to the ability of

decreased IIS to induce expression of chaperones such as the HSP

family of proteins [19]. An RNAi screen performed on these

worms identified chaperones as the most highly represented

functional class of proteins found to negatively modify SOD1

aggregation in this model [10]. Increased capacity for folding/

clearance in worms with reduced IIS is likely to contribute to

decreasing the toxcicity of mutant SOD1 in this model. We can

not rule out the contribution of other changes in metabolism, lipid

biogenesis, and free radical scavenger expression which have also

been linked to increased lifespan and stress resistance due to

decreased IIS [18,21,22].

Our data from the COPAS support both the concept that: 1) the

daf-2(e1370) background can help reduce buildup of insoluble

protein and 2) the ratio of soluble to insoluble G85R SOD1, rather

than its total abundance, is associated with toxicity in this model.

Using TOF as an approximation for age, it appears that G85R

worms accumulate less G85R SOD1 on the daf-2(e1370) as

opposed to wild type background over time. This suggests an

increased capacity for clearance of SOD1 over time in the daf-

2(e1370) background. The abundance of SOD1 in G85R;daf-

2(e1370);daf-16(mgDf50) worms is less than both G85R and

G85R;daf-2(e1370) in young animals yet their mobility is reduced

compared to G85R;daf-2(e1370) and equivalent to G85R at all time

points assessed. Although the relative abundance of SOD1 varies

between these strains over time, their relative locomotory activity

remains constant, suggesting that it is not total SOD1 abundance

that dictates toxicity.

Previous work with a worm model of Ab toxicity has

demonstrated that the daf-2(e1370) allele is protective against

Ab1–42 aggregates in two distinct ways. First daf-2(e1370) led to

activation of hsf-1 which resulted in breakdown of Ab1–42 fibrils.

Second daf-2(e1370) led to activation of daf-16 which increased the

abundance of Ab1–42 in high molecular weight aggregates. It is

possible that both activities diminish Ab1–42 toxicity by removing

Ab1–42from the putatively toxic fibril pool [23]. If these

observations can be generalized, they could account for the lack

of correlation between total SOD1 abundance and locomotory

deficits in these worms. G85R;daf-2(e1370);daf-16(mgDf50) worms

may not show the robust increase in SOD1 over time seen in the

G85R worms because they are not accumulating the large

aggregates of protein. These worms still suffer from SOD1 toxicity

due to high levels of insoluble SOD1, but may never reach the

same YFP intensity as G85R worms due to a lack of high molecular

weight aggregation facilitated by daf-16. Activation of hsf-1 in the

G85R;daf-2(e1370);daf-16(mgDf50) worms may also explain their

increased mobility compared to G85R;daf-16(mgDf50) worms in

the motility assay.

Using worms with neuronal expression of SID1, we demon-

strate that the beneficial effect of reduced daf-2 is likely to be

mediated by decreased IIS signaling in the nervous system. This

contrasts with its effects on longevity, where daf-2 RNAi (on a

background lacking pk3321 to enhance neuronal RNAi) mimics

the lifespan extending effects of the daf-2(e1370) allele. In this

setting, daf-2 RNAi does not influence gene expression in the

nervous system [33]. G85R;daf-2(e1370) worms fed daf-16 RNAi

should have normal levels of DAF-16 in their nervous system and

it would be activated due to the daf-2(e1370) background. If the

beneficial effect of decreased daf-2 activity was completely

mediated by the nervous system, then these worms should have

comparable locomotory function to G85R;daf-2(e1370) worms fed

empty vector. We find these worms to have an intermediate

phenotype with a significant reduction in locomotory activity as

compared to worms on empty vector RNAi plates. This suggests

that part of the beneficial effect of daf-2(e1370) might be mediated

through non-neuronal tissue(s). Alternatively, daf-16(RNAi) may

partially, although not completely, reduce daf-16 expression in

both neuronal and non-neuronal cells. Taken together, these

findings suggest that although decreased IIS is required in the in

the nervous system in order to have a beneficial effect on SOD1

toxicity, some of the downstream actions of reduced neuronal IIS

may be functioning in the periphery.

Our results demonstrate the strong capacity of the IIS pathway

to modulate G85R proteotoxicity. One possible mechanism of

action for this beneficial effect is through the ability of this pathway

to increase the cellular capacity to prevent toxic insoluble protein

accumulation. Interestingly this beneficial activity of IIS may not

be completely cell autonomous but may be in part a manifestation

of alterations in cellular aging coordinated at the organismal level.

This pathway may represent a possible therapeutic target for

proteotoxic diseases cause by insoluble proteins.

Figure 4. Longevity analysis, percent alive per day.
doi:10.1371/journal.pone.0033494.g004
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Materials and Methods

Worm Strains and Handling
C. elegans were cultured under standard conditions at 20uC and

fed the E. coli strain OP50 [34]. The following worm strains were

used: daf-16(mgDf50) and daf-2(e1370) were obtained from the

CGC. Psnb-1::hTDP-43;Pmtl-2::GFP and daf-2(e1370); Psnb-

1::hTDP-43;Pmtl-2::GFP were a generous gift of Chris Link. Psnb-

1::G85R SOD1::YFP and Psnb-1::WT SOD1::YFP were a generous

gift from Arthur Horwich and Jiou Wang. Punc119::sid1;-

sid1(pk3321) was a generous gift from Martin Chalfie. Double

and triple worms were generated by standard genetic crosses and

verified by PCR or fluorescence expression.

Locomotory Assay
Video recordings of worms were made using the image

acquisition tool in Matlab 2009b. These videos were then analyzed

using the parallel worm tracker software (downloaded from the

Goodman lab http://wormsense.stanford.edu/tracker/). For

monitoring locomotion on OP50 a 1 minute video was recorded

from each plate at the center of the lawn of OP50. At 50 worms

were analyzed for each genotype at each timepoint. The number

of worms was greater than 30 for each genotype at each timepoint.

For the swimming assay worms were suspended in a pool of M9

and their swimming was recorded for 30 seconds. At least 30

worms were analyzed per group per timepoint. Statistics were

performed using the average of each video as an n of 1 for speed or

size/speed.

Feeding RNAi
HT115 bacteria containing the indicated genes in the L4440

vector were grown overnight at 37uC in 50 ug/ml ampicillin.

They were then seeded on to NGM plates supplemented with

12.5 ug/ml tetracycline and 4 mM IPTG and allowed to grow

overnight at room temperature. Gravid adults were allowed to

drop eggs on the RNAi plates for 2 hrs and were then removed.

Plates were then kept at 20uC until they were assayed.

Imaging
Worms were immobilized in 25 mM levamisole on agar pad

slides and then coverslipped. Images were acquired at a constant

intensity on a confocal microscope using a 40 uM Zstack.

Soluble vs Insoluble Protein Assay
Approximately 100 ul of packed worms were lysed via

sonication in 300 ul RIPA buffer (150 mM NaCl, 50 mM Tris

pH 8.0, 1 mM EGTA, 5 mM EDTA, 1% NP40, 0.5% Sodium

Deoxycholate, 0.1% SDS) with complete protease inhibitor

cocktail. A soft spin of 800 g for 5 min was performed to remove

unlysed worms and large debris from the lysate. The supernatant

was then spun at 99,0006 g for 30 min @ 4uC. The supernatant

was kept as the soluble fraction. The pellet was sonicated again in

RIPA as a wash step to ensure removal of all soluble protein. It

was centrifuged again at 99,0006g for 30 min @ 4uC. The pellet

was then solublized in 50 ul urea buffer (40 mM Tris, 7 M urea,

2 M thiourea, 1% CHAPS). Equal volumes of sample were run on

SDS-page gels under reducing conditions and probed with anti

SOD1 antibody (Cell Signaling #2770) and anti actin (Sigma).

Westerns were visualized using the Odyssey system and quantified

using ImageJ.

COPAS
COPAS was used to sort and collect fluorescence intensity from

10,000 worms from each group as described in [35].

Longevity Assay
An egg drop was performed on NGM plates with OP50. The

lifespan assay was carried out at 20uC and worms were transferred

to fresh NGM OP50 plates as necessary in order to avoid starving

the animals. Each day worms were counted. FUDR was not

included in this assay so during the active reproductive period of

the worms they were transferred to a new plate each day.
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